Fuel Economy Low Viscosity Engine Oil Compatible with Low Speed Pre-ignition Performance

Sinopec Lubricant Co., Ltd

Outline

- 1. Previous Research on EOs Effect Factors of LSPI & FE
- 2. Research Results Introduction
- 3. Summary & Discussion

Previous Research on EOs Effect Factors of LSPI & FE

Effect Factors of LSPI

Fig.1 Correlation between Engine Oil Volatility and LSPI Frequency

Fig.2 Correlation between PDSC Oxidation Starting Temperature and LSPI Frequency

Fig.3 Correlation between Base Oil type and LSPI Frequency

- Non-effective volatility of oil
- Engine oil oxidation resistance has a good correlation with LSPI
- The higher the quality of the base oil, the lower the incidence of LSPI

Source: Kosuke Fujimoto, Engine Oil Development for Preventing Pre-Ignition in Turbocharged Gasoline Engine
Kazuo Takeuchi, Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines

Previous Research on EOs Effect Factors of LSPI & FE

Effect Factors of LSPI

Reduce Ca content (including Ca detergent)

- High temperature cleaning performance is damaged, need to replace the detergent
- 1400ppm is generally considered a cut-off point
- **Increase the content of P (ZDDP)**
- Consider the protection of tail gas post-treatment devices

Increase Mo content (Mo FM containing)

• Overall balance of formula

Fig.4 Effects of Engine Oil Additives on LSPI Frequency

Source: Kosuke Fujimoto, Engine Oil Development for Preventing Pre-Ignition in Turbocharged Gasoline Engine

Previous Research on EOs Effect Factors of LSPI & FE

Fig. 5 Fuel Economy Improvement

Tab. 1 Evaluated engine oil samples

Items	Formula system1		Formula system2		
	0W-16 0W-20		0W-16	0W-20	
Ca / Wt.%	0.19				
Mo/ ppm	<10				
VM	VI	M1	VM2		
Additive package and PPD	Same				
Base Oil	Same (Group III)				
Additional additive component / Wt.%	Without Component with good oxidation stability: 0.3%			•	

LSPI Engine Test Results

Fig. 6 LSPI Engine Test Results

WLTP Cycle

Use the same set-up, test procedure and reference oil as those for OEM certified FE test.

E220

-2.0T Diesel Engine

Engine Model: OM 654 DE 20 LA

-Car Model: E220d W213

-Reference oil: RL007

Fig. 7 The typical test profile

FE measurements

Items	0W-16			
Ca / Wt.%	0.19			
Mo/ ppm		700		
VM	VM2	VM3	VM4	VM2
Additive package and PPD	Same with table 1			
Base Oil	Same (Group III)			

Fig. 8 Fuel Economy

The test result of Sinopec & EVONIK joint development

FE measurements

Items	0W-16				
Ca / Wt.%	0.19				
Mo / ppm	600 600 0				
Organic FM/ ppm	400	800			
VM	VM2 VM3		VM2		
Additive package and PPD	Same with table 1				
Base Oil	Same (Group III)				

Fig. 9 Fuel Economy

The test result of Sinopec & EVONIK joint development

WLTP Cycle

E220

-2.0T Diesel Engine

Engine Model: OM 654 DE 20 LA

-Car Model: E220d W213

-Reference oil: RL007

C400

-2.0T Gasoline Engine

Engine Model: M276

-Car Model: C400 4MATIC

-Reference oil: RL007

Fig. 10 The typical test profile

Tab. 4 Evaluated engine oil samples

Items	0W-16					
Ca / Wt.%	0.19					
Mo / ppm	700 600 0					
Organic FM/ ppm	0	800				
VM	VM1 VM1 VM2					
Additive package and PPD	Same with table 1					
Base Oil	Same (Group III)					

FE measurements

Tab. 5 Test Results

	0W-16			
Fuel Economy, /%	Mo:700ppm	Mo 600ppm+ Organic FM: 400ppm	Organic FM: 800ppm	
E220d FE(OM654)FEI VS. RL007	0.55	0.64	0.68	
C400 FE(M276)FEI VS. RL007	/	0.67	0.89	

Mo Effects on Corrosion

Tab. 6 Corrosion Test Results

			0W-16		0W-16	Test Method
	Limit	Mo	Mo	Organic	Organic	
		0.7%	0.6%	0.4%	0.8%	ASTM D6594
HTCBT						
Cu increase / ppm	≤20	39	21		7	

LSPI

- In our research, formulation with high content of Ca, no Mo and suitable oxidation could effectively restrain LSPI.
- Higher viscosity more likely to cause LSPI.

FE

- It seems that high content Mo has negative effect on corrosion but active effect on FE improvement.
- In the particular formulation, organic anti-friction performance excellent on FE.

The development of low viscosity engine oil compatible with low speed pre-ignition performance and Fuel Economy. And meet the requirement of OEM.

Thanks for your attention

